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Abstract

Neutrino–photon interaction in a magnetized plasma is investi-

gated in the framework of an extended standard model when neutrino–

electron coupling is caused by exchange of Z ′ boson. The process of

the photon conversion into right neutrino pair γ → νR + ν̄R is ana-

lyzed as an additional channel of star energy loss. The comparison of

luminosity due to right neutrino emission in the process γ → νR + ν̄R

from supernova core with the total neutrino luminosity allows to get

a new restriction on the mass of Z ′ boson.

1 Introduction.

The neutrino processes in an active medium (plasma and external mag-
netic field) arouse steady interest over last decades. In particular, neutrino
play a paramount role in astrophysical phenomena like a supernova explo-
sion when a large number of neutrino are produced in a collapsing stellar
core [1]. Super dense (ρ ∼ 1014 g/cm3) and hot (T ∼ 35 MeV) substance
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of supernova core is opaque for the standard left neutrino. At the same time
the nonstandard right neutrino are the ”sterile” neutrino state with respect
to the standard weak interaction and can escape from the hot and dense
stellar interior. So, the processes of the right neutrino emission could give
an additional contribution to the energy losses by stellar objects. By this
means, the investigation of the right neutrino involving processes under ex-
treme conditions of hight density and/or temperature of matter and strong
magnetic field are of great interest [1].

In this paper we study a photon conversion into pair right neutrino,
γ → νR + ν̄R, in a plasma with the presence of an external magnetic field.
Such process becomes possible in the framework of the extended standard
model, for example, in the minimal quark–lepton symmetry model [2], when
neutrino–electron interaction is due to exchange by Z ′ boson.

We consider the process γ → νR+ν̄R in degenerate ultrarelativistic plasma
under conditions when the chemical potential of plasma electrons, µ, is the
dominate physical parameter, whereas the magnetic field is not so strong1

µ2 � T 2 � eB � m2

e, (1)

where me is the electron mass.
Notice, that the magnetic field being relatively weak (1) could be strong

enough in comparison with the critical value Be = m2

e/e = 4.41 × 1014 G.
Really, under conditions of a supernova core when the typical chemical po-
tential is assumed to be µ ∼ 250 MeV, plasma temperature is T ∼ 35 MeV [1]
from (1) we have

µ2

m2
e

∼ 105 � B

Be
� 1 (2)

Relation (2) demonstrates that even very strong magnetic fields up to the
1016 G satisfy the conditions (1) and can be considered as a relatively weak
field.

In the presence of both components of active medium the process γ →
νR+ν̄R is depicted by diagrams in Fig.1 and Fig.2. The loop diagram in Fig.1
corresponds to the field–induced neutrino–photon interaction, where double
lines indicate that the influence of the external field is taken into account
in the propagators of virtual fermions. The processes of forward photon
”scattering” into neutrino pair on plasma electrons (see two diagrams in
Fig 2.) give the plasma contribution to the conversion γ → νR + ν̄R.

1We use natural units in which c = h̄ = 1, e > 0 is the elementary charge.
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Figure 1: Neutrino photon interaction in an external magnetic field.

The interaction of Z ′ boson with electrons and neutrino can be written
in the general form

L = − e

cos θW
Z ′

µ [ν̄γµ(v + aγ5)ν + ēγµ(gv + gaγ5)e], (3)

where θW is the Weinberg angle, v, gv and a, ga are the model depended
vector and axial coupling constant of Z ′ boson to fermions [2, 3]. We will
perform calculations under the assumption of a relatively small momentum
transferred q2 � m2

Z′, where mZ′ is the mass of Z ′ boson. Therefore we can
investigate the process γ → νR + ν̄R in the local limit when the line of Z ′

boson is contracted to a point. In view of this fact from (3) one can obtained
the effective lagrangian of neutrino-electron interaction

Leff = −rGF√
2

(ēγµ(gv − gaγ5)e) jµ. (4)

Here r = 4 sin2 θW (v−a)m2

Z/m2

Z′ and jµ = ν̄γµ(1+γ5)ν is the right neutrino
current, mZ is the mass of the standard Z boson.

Because of the vector (V) character of a photon–electron interaction, there
are exist two types of transition V → V and V → A, corresponding to the

←

×

×
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+ ←
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×
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Figure 2: The conversion γ → νR + ν̄R in the presence of magnetized plasma.
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vector and axial-vector coupling of electrons with the right neutrino. Below
we will separate these processes by the indexes V and A correspondingly.

The differential probability of the process γ → νR + ν̄R is defined by
expression [4]

dW =
1

8(2π)2

d3k1d
3k2

ωω1ω2

δ4(q − k1 − k2) | M |2 . (5)

Here qµ = (ω,~k), kµ
1 = (ω1, ~k1), kµ

2 = (ω2, ~k2) are the four - momenta of
the photon, neutrino and antineutrino correspondingly, M is the invariant
amplitude which is connected with a S matrix element by following way:

S =
i(2π)4 δ4(q − k1 − k2)√

2ωV
√

2ω1V
√

2ω2V
M.

From the point of view of a practical application of the result obtained
the star energy-loss due to a neutrino emission is of more interest than the
probabilities of the process considered. The volume density of plasma energy
loss in unite time can be presented in the terms of invariant amplitude

ε̇ ≡ 1

8(2π)5

∫ d3k

eω/T − 1

dk1dk2

ω1ω2

δ4(q − k1 − k2) | M |2 . (6)

2 Average amplitude squared of the process

γ → νR + ν̄R.

As one can see from (6) there is a need to calculate the averaged amplitude
squared which is defined as

M2 ≡
∫

d3k1d
3k2

ω1ω2

δ4(q − k1 − k2) | M |2 . (7)

Taking into account that the amplitude of the process considered can be
presented in the form

M = (Jα jα),

where Jα is a 4 – vector which does not depends on neutrino momentum kµ
1 ,

kµ
2 , the calculation of the amplitude squared (7) reduces to the computation
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of the integral

∫

d3k1d
3k2

ω1ω2

δ4(q − k1 − k2) jαj∗β =
16π

3
(qαqβ − q2gαβ), (8)

We do no present here the details of calculation the amplitude of the pro-
cess considered, which will be published in an extended paper. Performing
the calculations with (8) we have obtained the following result for the axial
contribution into the plasma averaged amplitude squared

(

Mpl
A

)2

= α
16G2

F r2 g2

a

3π2
µ2 (q2)2

(1 − x2) (1 − l(x))2

x2
, (9)

where α = e2/4π is the fine structure constant, x =| ~k | /ω and function l(x)
is determined as

l(x) =
1

2x
ln
(

1 + x

1 − x

)

.

To obtain the expression for vector contribution into the amplitude of the
process γ → νR + ν̄R we use amplitude of the transition γ → γ, which can
be represented in the form

Mγ→γ = ε∗αΠαβεβ, (10)

where Παβ is the photon polarization operator, εα is the photon 4 - polariza-
tion vector.

Replacing in the (10) one polarization vector to the right neutrino current
with corresponding coefficient, εα → −GF rgv jα/e

√
2, we have

Mpl
V = − GF rgv

e
√

2
(jαΠαβεβ). (11)

In view of the relative smallness of the magnetic field on the scale of the
plasma parameters (1) a property of the polarization operator are basically
determined by plasma. In this case the tensor structure of the photon po-
larization operator is usually decomposed into transversal and longitudinal
parts

Παβ = P tΠt
αβ + P lΠl

αβ, (12)

Πt
αβ = −

(

gαβ − qαqβ

q2
− lαlβ

l2

)

, Πl
αβ =

lαlβ
l2

,
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where P t and P L are the eigenvalues of the transversal and longitudinal
modes of the Παβ, lα is the longitudinal eigenvector corresponding to the
longitudinal plasmon

lα =

√

√

√

√

q2

(uq)2 − q2

(

uα − (uq)

q2
qα

)

.

Here uα is the medium-velocity 4-vector, which in the plasma rest frame has
the form uα = (1,~0). Eigenvalues P t and P L in the degenerate ultrarelativis-
tic plasma can be presented in the form [5]

P t =
2α

π
µ2

(1 − (1 − x2)l(x))

x2
, (13)

P l =
4α

π
µ2

(1 − x2)(l(x) − 1)

x2
. (14)

The result of our calculations for the averaged amplitude squared caused
by the conversion transversal (γt) and longitudinal (γL) plasmon into pair
right neutrino is

(

Mpl
V, γt

)2

=
8G2

F r2 g2

v

3π
µ2 (q2)2

(1 − (1 − x2)l(x))

x2
, (15)

(

Mpl
V, γL

)2

=
8G2

F r2 g2

v

3π
µ2 (q2)2

(1 − x2)(l(x) − 1)

x2
, (16)

where the dispersion laws for the transversal and longitudinal photon (P t,l =
q2) where taken into account.

As one can see from (9), (15) and (16) the contribution into the plasma
averaged amplitude squared due to the axial-vector neutrino - electron inter-
action contains the suppression associated with the fine structure constant
α, and can be neglected in comparison with the vector one.

The field-induced contribution into the amplitude of the process caused by
the loop diagram (Fig.1). The result of our calculations for the field-induced
part of the averaged amplitude squared can be reduced to the form

(

MF
V

)2 ' α G2

F r2 g2

v q2 q2

‖





eB

q2

‖





4/3

{a1(εϕq)2 + b1(εϕ̃q)2}, (17)

(

MF
A

)2 ' α G2

F r2 g2

a q2 q2

‖





eB

q2

‖





2

{a2(εϕ̃q)2 + b2(εϕϕq)2}, (18)
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where a1, a2, b1, b2 are the dimensionless coefficients of the order of unit,
ϕαβ = Fαβ/B and ϕ̃αβ = εαβµνϕµν/2 are the dimensionless magnetic field
tensor and the dual tensor, q2

‖ = qϕ̃ϕ̃q = ω2−k2

3
(the magnetic field directed

along the third axis, ~B = (0, 0, B)).
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Figure 3: Dispertion curves for transversal plasmon ω2 = ω2

t (k) (upper solid
line), longitudinal plasmon ω2 = ω2

L(k) (lower solid line) and vacuum photon
q2 = 0 (broken line).

Notice, that the averaged amplitude squared (9), (15)-(18) and, conse-
quently the probabilities of the processes considered not being zero only be-
cause of photon dispersion law in a plasma (q2 = P t 6= 0 or q2 = P l 6= 0) in
contrast to vacuum one (q2 = 0). The dispersion curves for longitudinal and
transversal plasmon are shown in Fig.3, where ωpl and ko are the plasmon
frequency and point of intersection of the longitudinal plasmon and vacuum
lines correspondingly. In the degenerate ultrarelativistic plasma these pa-
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rameters are [5]:

ω2

pl =
4α

3π
µ2, k2

0
=

4α

π
µ2 ln

(

2µ

me

− 1
)

.

The necessary condition of the photon conversion into pair neutrino q2 > 0
is realized for the transversal photon in the region ω2

pl < ω2

t < ∞ and for the
longitudinal plasmon in the region ω2

pl < ω2

L < k2

0
. Since under conditions of

a supernova core where the typical photon energy is of the order of plasma
temperature, q2

‖ ∼ T 2, we can estimate the ratio of field averaged amplitude
square to the plasma one:

(

MF
V

)2

(

Mpl
V

)2
∼
(

eBT

µ3

)4/3

� 1,

(

MF
A

)2

(

Mpl
V

)2
∼ g2

a

g2
v

(

eB

µ2

)2

� 1. (19)

Thus under conditions considered (1) the main contribution into the pro-
cess γ → νR + ν̄R arises from Compton - like process of neutrino scattering
on plasma electrons caused in main by vector part of neutrino-electron inter-
action in the lagrangian (4).

3 Neutrino emissivity.

To illustrate a possible astrophysical application of the result obtained,
we have calculate the stellar energy loss due to neutrino emission in the
process γ → νR + ν̄R from a supernova core. In our case the volume density
of energy loss per unit time is defined in (6). Substituting expressions (16),
(15) in (6) and carrying out the integration over angles, we obtain the plasma
energy losses due to conversion of longitudinal and transversal photons into
neutrino pair in the form

ε̇γL→νν̃ =
G2

Fg2

v

96απ4
ω6

pl T
3

v∗
∫

v

dz z
√

z2 − v2βl(z)

ez − 1
β3

l (z),

ε̇γt→νν̃ =
G2

Fg2

v

48απ4
ω6

pl T
3

∞
∫

v

dz z
√

z2 − v2βt(z)

ez − 1
β3

t (z), (20)
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where the variable z defines the photon energy, z = ω/T , and the following
designations are used

v =
ωpl

T
, v∗ =

k0

T
, βl(z) =

P l(z)

ω2

pl

, βt(z) =
P t(z)

ω2

pl

.

Below we estimate the star energy losses due to emission of right neutrino
in the process γt → νR + ν̄R from a supernova core during the first few second
after collapse. For estimation we take µ ∼ 250 MeV, T ∼ 35 MeV:

ε̇γt→νν̃ ∼ r2 g2

v 1055erg/s. (21)

The vector and axial-vector coupling could be identified, for example, in a
minimal quark–lepton symmetry model, where g2

V ' 1 and parameter r with
a good precision is a ratio between mass of Z and Z ′ bosons, r ' m2

Z/m2

Z′ .
On the assumption that the result (21) does not exceed of 10% from neutrino
luminosity under the same conditions Lν ∼ 1052 erg/s [1], we obtained the
following bound on the mass of Z ′ boson

mZ′ > 1000 GeV,

which is a greater then existing one [2, 6]

4 Conclusion.

We have studied the photon conversion into pair right neutrino in a
plasma with the presence of a relatively weak magnetic field. It is shown that
under typical conditions of a supernova core the plasma process dominates
over field one and mainly caused by the vector coupling of right neutrino and
plasma electrons. We have calculated the plasma energy losses due to right
neutrino emission in the process γ → νR + ν̄R from the supernova core and
obtained the new bound to the mass of Z ′ boson.

9



Acknowledgments

The authors are grateful to Organizing Commitee of the International
Seminar ”Quarks - 2004” for possibility to present our reseach in this seminar,
for warm hospitality and very interesting Social programme at Conference.

This work supported in part by the Council on Grants by the Presi-
dent of Russian Federation for the Support of Young Russian Scientists and
Leading Scientific Schools of Russian Federation under the Grant No. NSh-
1916.2003.2, by the Russian Foundation for Basic Research under the Grant
No. 04-02-16253, and by the Ministry of Education of Russian Federation
under the Grant No. E02-11.0-48.

References

[1] G.G. Raffelt, Stars as Laboratories for Fundamental Physics (University
of Chicago Press, 1996).

[2] A.V. Povarov, A.D. Smirnov Phys.of Atomic Nuclei 65, 281 (2002)

[3] A.Leike Phys.Rep. 317, 143 (1999)

[4] V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii Quantum electrody-

namics (Pergamon Press, Oxford, 1982).

[5] T. Altherr, Astropart. Phys. 1, 289 (1993).

[6] Partical Data Group (K. Hagiwara et.al.) Phys. Rev. D, 66 (2002).

10


