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Abstract

The width of the neutrino decay into the electron and W boson in a strong external
magnetic field is obtained from the imaginary part of the neutrino self-energy. This result
corrects the formulae existing in the literature. The mean free path of an ultra-high energy
neutrino in a strong magnetic field is calculated. An energy cutoff for neutrinos propagating
in a strong field is defined.

1 Introduction

The first and unique registration of extragalactic neutrinos from the supernova SN1987A ex-
plosion in the Large Magellanic Cloud, a satellite galaxy of our Milky Way, was undoubtedly
an exciting achievement of neutrino astrophysics. The solution to the solar-neutrino puzzle
in an experiment at the heavy-water detector installed at the Sudbury Neutrino Observatory
was one more important result in this field. This experiment confirmed B. Pontecorvo’s key
idea concerning neutrino oscillations and, along with experiments that studied atmospheric and
reactor neutrinos, thereby proved the existence of a nonzero neutrino mass and the existence of
mixing in the lepton sector, see e.g. [1,2] and the references cited therein. In this connection, the
problem of studying the possible effect of an active environment, including a strong magnetic
field, on the dispersion properties of the neutrinos becomes quite important.

An analysis of the effect of an external medium on neutrino properties relies on calculating
the neutrino self-energy operator X(p), from which one can extract the neutrino dispersion
relation, and in part the imaginary part of the neutrino self-energy in medium, defining the
width of the neutrino decay into the W™ boson and a charged lepton, v — ¢~ W ™. Here, we
consider an electron as a charged lepton, but all the formulas are valid to the muon and 7 lepton
as well.

A literature search reveals that calculations of the neutrino dispersion relation in external
magnetic fields have a long history [3-10]. To compare the different results we analyse the
neutrino self-energy operator ¥ (p) that is defined in terms of the invariant amplitude for the
transition v, — v, by the relation

M(ve = ve) = = [Te(p) B(p) ve(p)] = —Tr [X(p) p(p)] , (1)

where p = (F, p) is the neutrino four-momentum, p(p) = ve(p)ve(p) is the neutrino density
matrix. On the other hand, the additional energy AFE acquired by a neutrino in an external
magnetic field is defined via the invariant amplitude (1) as follows:
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1
AE = _ﬁM(Ve — Ve) . (2)

The S matrix element for the transition v, — v, corresponds to the Feynman diagrams
shown in Fig. 1 where double lines denote exact propagators in the presence of an external
magnetic field. A detailed description of the calculational techniques for the neutrino self-
energy operator ¥(p) in external electromagnetic fields can be found e.g. in Ref. [5], see also [7,
8,11]. The relevant S-matrix element can be used to deduce, in a standard way, the invariant
amplitude (1), whence the neutrino self-energy operator takes the form

ig? 1
2(p) =~ | LI 0) 2 L+ — (meR = m, L) SV p) (meL —m,B) | (3)
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Here, g is the Standard Model electroweak coupling constant; ~y, are the Dirac matrices; L =
(1—75)/2 and R = (1+1y5)/2 are, respectively, the left- and the right-hand projection operator.
The integrals introduced in (3) have the form

4
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where S(q), G(ﬁ‘g) (¢—p) and D®)(q — p) are the Fourier transforms of the translation-invariant
parts of the propagators for the electron, the W~ boson, and the charged scalar ® boson,
respectively. We note that the quantity m,, in (3) is in general the nondiagonal Dirac neutrino
mass matrix with allowance for mixing in the lepton sector. By this means the flavor non-
conserving decays v, — uW,7W are also possible which are suppressed, however, by the very
small parameter ~ (m,/my )% < 10722,
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Figure 1: Feynman diagrams representing the magnetic-field-induced contribution to the neu-
trino self-energy operator in the Feynman gauge. Double lines correspond to the exact propa-
gators for the charged lepton, the W boson, and the nonphysical scalar charged ® boson in an
external magnetic field.

The general Lorentz structure of the operator ¥(p) in a magnetic field, defined in Eq. (3),
can be represented in the form [§]

S(p) = [AL(py)+ B (py)) +Cr (ppy)] L
+ [Ar(pY) + Br (p7)) + Cr (p@7)] R+ my [K1 +1K2 (vey)] - (5)

The Lorentz indices of four-vectors and tensors within parentheses are contracted consecutively,
e.g. (ppvy) = pagoagvg . Further, ¢ is the dimensionless tensor of the electromagnetic field,
normalized to the external B-field, whereas ¢ is its dual,

F, 5 1
PaB = %ﬁ’ PaB = 5 5015#1/90}“/ . (6)



Finally, in the frame where only an external magnetic field B is present, we take the spatial 3-axis
to be directed along B. Four-vectors with the indices L and || belong to the Euclidean {1,2}-
subspace and the Minkowski {0, 3}-subspace, correspondingly. For example, p; = (0, p1,p2,0)
and p| = (po,0,0,p3). For any four-vectors P and @) we use the notation

(PQ) = (PepQ) = PQo— PQs,
(PQ)L = (PppQ)=PiQ1+ PQq,
(PQ) = (PQ) —(PQ).. (7)

The coefficients Ag, Bgr, Cr, and K;2 in (5) stem from the Feynman diagram involving
the scalar ® boson, while the coefficients Az, By, and Cy, contain the contributions from both
diagrams. We note that the coefficients Ay, Agr, and K; in (5) contain an ultraviolet divergence
which is removed by the vacuum renormalization of the neutrino wave function and mass.

Using Egs. (1), (2) and (5), the neutrino additional energy AE in an external magnetic field
can be written in the form:

2 2
AE = B2l — (sv)] + Br ok 1+ (sv)
2K 2K
m m
— 5100 —Cr+4Ks — (B — B) (bv)] [(sbt) + 2 (sby)

m2

+ op (Ar+ AR +2K1) (8)

where v = p/F is the neutrino velocity vector, s is the unit vector of the doubled neutrino
spin, b is the unit vector along the magnetic field direction, and by, are its transversal and
longitudinal components with respect to the neurino momentum, b = b; + by.

In the previous papers, the neutrino self-energy operator (3) was calculated in different
regions of values of the physical parameters, however, the list of these considered regions appears
not to be comprehensive. Namely, the investigated limiting cases were the following:

i) a weak field case (eB < m?) [5,7];

ii) a case of a moderately strong field (m2? < eB < mj,) and limited region of a neutrino
transverse momentum with respect to the magnetic field (p; < mw) [7];

iii) the situation where the neutrino transverse momentum p, is rather high, for example,
pL 2 mw or py > my, while the magnetic field strength is not too high, eB < m?2,

~

which corresponds to the crossed-field approximation [4,6,8,9].

There is yet another region of values of the physical parameters that requires a dedicated
analysis. We mean here the case of the high neutrino transverse momentum, when the magnetic
field strength is also rather high, thus, the crossed-field approximation is not valid.

This region of parameter values is of importance in connection with problems of the physics
of magnetars, the pulsars with superstrong surface magnetic fields (Bs ~ 10'® G). In particular,
the possibility of detecting cosmic neutrinos of ultrahigh energy, ~ 1 PeV or even higher, from
magnetars is widely discussed (see, for example, [12-14]). It looks reasonable that the process
of emission of neutrinos having such energies cannot be described adequately without taking
into account their interaction with a strong magnetic field of a magnetar.

This talk is based on our recent paper [15].

2 Charged-lepton, - and ®-boson propagators in a magnetic
field

The Fourier transforms of the translation-invariant parts of the exact propagators in an external
magnetic field, entering into expressions (4) can be presented in the Fock proper-time formalism



in the following form, see e.g. [5,16]. The lepton propagator is

5() = [ e { [l me] [eos s = O | - LA )

cos Os cos Os

where 8 = eB and m, is the electron mass.
Similarly, the W-boson propagator can be written as

Grla) == [ e [(@@w — () 08 205 — g sin zﬁs] (10)

And finally, for the ®-boson propagator one obtains

D@ = [ dse i, (11)
0

where we have chosen the Feynman gauge for the W and ® bosons and have introduced the
notation (j = e, W)

tan Gs
Qj:s(m?—qﬁ)-i-Tqi. (12)

3 The neutrino decay v — ¢~ W™ in an external electromagnetic
field

The probability of the neutrino decay v — e~ W™ in an external electromagnetic field is one
of the most interesting results that can be extracted from the neutrino self-energy operator.
This probability can be expressed in terms of the imaginary part of the amplitude (1) with the
neutrino self-energy operator (5).

For simplicity, hereafter we neglect the neutrino mass m,,, taking the density matrix of the
left-handed neutrino as p(p) = (py) L. One obtains:

2
wyv —e W) = %Im/\/l(l/e — V) = —%ImTr [X(p) (py) L] = -2 % Im By, . (13)

An analysis of the neutrino decay ¥ — e~ W™ in an external field is of interest only at
ultrahigh neutrino energies.

In all previous papers the neutrino decay width in an external electromagnetic field was
calculated in the crossed field approximation, in which case the width is expressed in terms of
the dynamical field parameter y and the lepton mass parameter A:

e(pFFp)'/? me
X= 73 , A= mze : (14)
w w

The particular case of a crossed field is in fact more general than it may seem at first glance.
Really, the situation is possible when the field dynamical parameter y of the relativistic particle
propagating in a relatively weak electromagnetic field, F' < B, (where F' means the electric
and/or magnetic field strength, B, = m?2/e ~ 4.41 x 103 G is the critical field value), could
appear rather high. In this case the field in the particle rest frame can exceed essentially the
critical value and is very close to the crossed field. Even in a magnetic field whose strength is
much greater than the critical value, the result obtained in a crossed field will correctly describe
the leading contribution to the probability of a process in a pure magnetic field, provided that
X > B/B.. In the frame where the field is pure magnetic one, the dynamical field parameter
takes the form:

_eBpi

3 (15)
W
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A general expression for the decay width can be written in this case in the form [§]
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X [rAAL=2)] 20+ 2)(2+2) + AL —2)(2 - 2)], (16)

where Ky/3(U) is the modified Bessel function, with the argument:

_ 2 AP
- 3y z2(1—2)

(17)
Taking in Eq.(16) the limit x, A < 1, one obtains the result which can be written in terms

of the only modified dynamical field parameter

e- X _ By
VA memd,

(18)

The range for the ¢ parameter appears to be rather large, 0 < ¢ < 1/v/A = my/m,. For the
electron, it is: 0 < & < 1.6 x 10°. If one replaces m, — m,, then the range is not too wide,
0 < & <« 45.

The decay width takes the form

wlv —e Wh) = V2Gr (cB p1)” (1 + §> exp <—£) . (19)

3 m%/v E 13 13

The formula (19) should be compared with the results of Refs. [4,6,9]. It should be mentioned
that the decay width w defined in Refs. [4, 8] is the same, in the natural system of units,
than the absorption coefficient o [6] and the damping rate of the neutrino v [9]. One can
see that the absorption coefficient a presented in Eq.(25) of Ref. [6] looks very similar to our
Eq. (19). However, the angular dependence in our formulas is quite different: instead of the
factor p? /E = E'sin® 6 standing in our Eq. (19), there is the factor p; = Esin6 in Eq.(25) of
Ref. [6].

On the other hand, one can see that our result (19) surely contradicts the Eq. (58) of Ref. [9],
where an attempt was made of reinvestigation of the process ¥ — e~ W™ in the crossed field
approximation. The difference is the most essential at small values of £, where the result of
Ref. [9] appears to be strongly underestimated.

In the earlier paper by Borisov et al. [4] the calculations of the process v — e~ W™ width
were performed in the two limiting cases of the small and large values of the parameter y. In
the limit x? < A (i.e. £ < 1) their result can be presented in the form

2 om?
v % ij . eBsin fexp <_¢§ %> , (20)

and can be reproduced from the general formula (19).
On the other hand, in the limit x > 1 (€ > 1/v/)\) the result of Ref. [4] can be written as

V3 Gr
-5

and can be reproduced from our more general formula (16).

A problem of the decay v — e~ W™ has a physical meaning only in the fields of the pulsar
type, where the field strength is of order of the critical value ~ 10'3 G. The above formulas
for the probability except for Eq. (21) are applicable for relatively weak fields only, B < 1013

w

my eBsind, (21)



G. Taking into account the discovery of magnetars which are the neutron stars with the fields
~ 10 — 10 G, it is interesting to calculate the probability of the process v — e~ W in such
fields where the crossed-field approximation is inapplicable.

Thus, we will use the following hierarchy of the physical parameters: pi > m%/v > eB >
m2. A general expression for the process v — e~ W™ probability can be obtained by the
substitution of Eq. (3) into Eq. (13) with taking account of Egs. (9) - (11). After calculations
which are not difficult but rather cumbersome, the process width can be expressed via the
function ®(n) depending on the one parameter 7 only:

4 eBp?
= L (22)
w
The process width can be presented in the form
_ Gr (eB)*? p,
WH = ——"2—"=d(n), 23
w(y — e W) = 5T o) (23)
where
(1) = l/ dy (tanhy)'/? (sinhy)? — y tanhy __ytanhy (24)
= yl/2 (sinhy)?  (y — tanhy)3/2 n(y — tanhy) |

n
0

We stress that we have obtained this formula neglecting the electron mass as the smallest
parameter in the hierarchy used.

The formulas (23), (24) present our main results and are valid in a wide region of the
parameter 7 values, 0 < n < m#,/(eB). The function ®(n) is essentially simplified at large and
small values of the argument.

In the limit 7 >> 1 one obtains:

m(n—0.3), (25)

Wl

o(n>1)~

and the error is less than 1 % for n > 10.

The formulas (23), (25) reproduce the probability (19), where the limit £ > 1 should be
taken.

In the other limit n < 1 one obtains

P(n < 1) ~exp <—%> <1 - %7} + %7}2> (26)
and the error is less than 1 % for n < 0.5.

The formulas obtained allow to establish an upper limit on the energy spectrum of neutrinos
propagating in a strong magnetic field. Let us take the typical size R of the region with the
strong magnetic field as R ~ 10 km. If the neutrino mean free path A = 1/w is much less than
the field size, A < R, all the neutrinos are decaying inside such the field. For A = 1 km < R,
we can find the cutoff energies F,. for the neutrino spectrum, depending on the magnetic field
strength. This dependence is calculated numerically and is shown in Fig. 2. There are two
parameter regions where the dependence can be essentially simplified, as follows:

i) for relatively weak field, B ~ 0.1B, ~ 4 x 10'2 G, the neutrino mean free path can be
obtained from Eq. (20):

4.9m 219
Ay —— —_— 27
BO.l sin@ P <BO,1 E15 sin 9) ’ ( )



Figure 2: The dependence of the neutrino cutoff energy F. on the magnetic field strength for
the fixed neutrino mean free path value, A = 1 km.

where By = B/(0.1B,), E15 = E/(10'%eV), and the cutoff energy corresponding to A = 1 km,
at B()_1 = 1, 0 :7T/2, is

E,~ 0.4 x107eV; (28)

ii) for relatively strong field, B ~ 10B, ~ 4 x 10'* G, the neutrino mean free path can be
obtained from Egs. (23), (26):

3.2 4.0
B})? sinf B Ef5 sin” ¢
where Byg = B/(10B.), and the cutoff energy corresponding to A = 1 km, at Bjgp =1, 0 = /2,
is

E,~ 0.6 x 10%eV. (30)

The results obtained show an essential influence of the intense magnetic field on the process
v — e~ W™ width. Despite the exponential character of suppression of the width in a strong
field, Eqgs. (23), (26), as well as in a weak field, Eq. (20), the decay width in a strong field is
greater in orders of magnitude than the one in a weak field, for the same neutrino energy.

4 Conclusion

e An influence of a strong external magnetic field on the neutrino self-energy operator is
investigated.

e The width of the neutrino decay into the electron and W boson, and the mean free path
of an ultra-high energy neutrino in a strong magnetic field are calculated.



e An energy cutoff for neutrinos propagating in a strong field is defined. The cutoff energy
at B~ 5B, ~ 2.2 x 10" G is: E, =10'%eV .
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